Packing fraction of geometric random packings of discretely sized particles.
نویسنده
چکیده
The packing fraction of geometric random packings of discretely sized particles is addressed in the present paper. In an earlier paper [Brouwers, Phys. Rev. E 74, 031309 (2006); Brouwers, Phys. Rev. E 74, 069901(E) (2006)], analytical solutions were presented for the packing fraction of polydisperse geometric packings for discretely sized particles with infinitely large size ratio and the packing of continuously sized particles. Here the packing of discretely sized particles with finite size ratio u is analyzed and compared with empirical data concerning five ternary geometric random close packings of spheres with a size ratio of 2, yielding good agreement.
منابع مشابه
Particle-size distribution and packing fraction of geometric random packings.
This paper addresses the geometric random packing and void fraction of polydisperse particles. It is demonstrated that the bimodal packing can be transformed into a continuous particle-size distribution of the power law type. It follows that a maximum packing fraction of particles is obtained when the exponent (distribution modulus) of the power law function is zero, which is to say, the cumula...
متن کاملPacking fraction of trimodal spheres with small size ratio: an analytical expression.
In previous papers analytical expressions were derived and validated for the packing fraction of bimodal hard spheres with small size ratio, applicable to ordered (crystalline) [H. J. H. Brouwers, Phys. Rev. E 76, 041304 (2007);H. J. H. Brouwers, Phys. Rev. E 78, 011303 (2008)] and disordered (random) packings [H. J. H. Brouwers, Phys. Rev. E 87, 032202 (2013)]. In the present paper the underly...
متن کاملPackings and Approximate Packings of Spheres
Close-packings of uniformly-sized spheres with centres on various lattices are described, with volume fractions equal or close to the maximum possible = p 18 (this value has long been `known' via Kepler's conjecture, and has been proved). Regular packings with two or three sized spheres can push this volume fraction to beyond 80%. The bulk of the paper studies irregular `packings' of a large sp...
متن کاملWall Effect in 3D Simulation Of Same Sized Particles Packing
In this paper, the effects of container size on the porosity of random loose packing of mono size particles have been investigated using an Event Dynamics (ED) based model. Simultaneous effects of square container walls on particles packing and their order are also investigated. Our simulation results indicate higher container size will increase the total packing factor and high density regions...
متن کاملRandom packings of frictionless particles.
We conduct numerical simulations of random packings of frictionless particles at T = 0. The packing fraction where the pressure becomes nonzero is the same as the jamming threshold, where the static shear modulus becomes nonzero. The distribution of threshold packing fractions narrows, and its peak approaches random close packing as the system size increases. For packing fractions within the pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2011